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Abstract

The current study investigates the interaction problem of a fiber-shaped piezoelectric inhomogeneity embedded in a
non-piezoelectric elastic matrix, which contains a crack. The matrix is assumed to be infinite in all directions and the
crack is near the piezoelectric fiber. Different geometrical crack—-inhomogeneity configurations are considered. The body
is subjected to a far-field in-plane tension and a far-field anti-plane electric field. With the solution of stress field for a
piezoelectric inhomogeneity embedded in an elastic matrix, the solution of current problem is obtained through a
decomposition process. A set of singular integral equations in the crack domain is derived through the dislocation
theory. The expressions for the stress intensity factors are then obtained in terms of the asymptotic values of dislocation
density functions solved from these integral equations. Numerical examples indicate that interaction between the pi-
ezoelectric inhomogeneity and the crack is influenced by many factors, such as the configuration, the material properties
of the piezoelectric inhomogeneity and matrix, as well as the far-field electrical and mechanical loadings. The stress
intensity factors on crack tips obtained have been checked and confirmed by finite element analysis. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Along with the widespread applications of piezoelectric materials and piezoelectric composites, the
electro-elastic analysis of such materials becomes one of the most important problems in engineering. Due
to their intrinsic electro-mechanical coupling behavior, piezoelectric materials have been widely used as
resonators, actuators and sensors, among which sensor is the most common application. When piezo-
electric materials are used as sensors, they are usually embedded in non-piezoelectric materials. Because of
the electro-mechanical interaction between the sensor and the surrounding material, the properties of the
surrounding material may influence the response of the sensor to external load. According to this phe-
nomenon, the sensor can be used to detect possible defects in the surrounding material. So, it is desirable to
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understand the interaction between the piezoelectric sensor and a near-by flaw in the matrix. This is the
main objective of the current investigation.

It is worthwhile to summarize the previous work directly related to present study in open literature.
Extension of the well-known Eshelby (1957) ellipsoidal inhomogeneity solution for elasticity to piezo-
electric material has been done by Wang (1992). Due to the complexity of the problem, conclusions drawn
based on his formulation are general. In the three-dimensional formulation of Wang (1992), both the in-
homogeneity and matrix are piezoelectric materials, and he reached the result that all the field variables are
uniform inside the inclusion. However, the general anisotropy and coupling of mechanical and electrical
fields have limited further extension of his work. Some simplification has to be made for a specific problem
in order to gain an insight into the problem. When a piezoelectric material is used as a sensor, the matrix is
most likely to be a non-piezoelectric material. Fan (1995) analyzed a piezoelectric ellipsoidal sensor em-
bedded in a non-piezoelectric elastic matrix via equivalent inclusion method. The assumption of no electro-
mechanical interaction in the matrix material simplified the formulation compared to Wang’s work (1992).
The original piezoelectric inhomogeneity problem is partially decoupled into an elastic problem and a
dielectric problem connected via some “‘eigenstrain” and “eigenelectric field”.

In our previous work, following Wang (1992) and Fan (1995), the stress field outside a piezoelectric
inhomogeneity embedded in non-piezoelectric matrix is evaluated (Xiao and Bai, 1999a); then, the stress
field and stress intensity factor for a Griffith crack located near a piezoelectric inhomogeneity are obtained
for a simple crack—-inhomogeneity configuration (Xiao and Bai, 1999b). The present study aims to extend
the work of Xiao and Bai (1999b) to generalized inhomogeneity—crack geometric configuration, and give a
generic solution method to piezoelectric inhomogeneity—crack interaction problem. It is worth mentioning
that in the problem solved by Xiao and Bai (1999b), the crack is located symmetrically relative to the
piezoelectric fiber sensor, no Mode II stress intensity factor exists at the crack tip. While for the current
study, the analytical method developed can be applied to any general case that crack is located with random
orientation near the piezoelectric sensor. As a result, the formulation here is much more complex and both
Mode I and Mode II stress intensity factors exist at the crack tip. As mentioned in the beginning of this
section, the engineering application of the current study is to use piezoelectric sensors to detect the possible
near-by-micro crack. As the crack orientation is unknown in advance, the investigation in this paper can
better serve the practical engineering application purpose.

2. Physical problem and decomposition process

The physical problem to be investigated is shown in Fig. 1(a), where the solid is assumed in a plane strain
state. The matrix is an isotropic elastic material. The inhomogeneity is transversely isotropic piezoelectric
material (with x; as the poling axis) in cylindrical shape with radius ¢ and infinite length. The crack with
length 2¢ is arbitrarily oriented on x;x, plane. A parameter J is used to denote the distance between the
centers of the inhomogeneity and the crack. The matrix is subjected to a far-field in-plane uniform tension
69, and anti-plane electric field EY. The coordinate used here is plane coordinate system (x;,x;) with the
origin at the center of the inhomogeneity.

As the matrix is a purely elastic material, there is no mechanical-electric coupling behavior inside the
matrix. By employing a superposition process (Hills et al., 1996), the original problem shown in Fig. 1(a)
can be obtained through the sum of two sub-problems, as shown in Fig. 1(b) and (c), respectively. The
problem shown in Fig. 1(b) is a piezoelectric inhomogeneity embedded in the matrix without the crack. The
solution of this problem can be found in Xiao and Bai (1999a). For the second sub-problem shown in Fig.
1(c), the only external loads are the crack surface tractions which are equal in magnitude and opposite in
sign to the stresses obtained in the problem Fig. 1(b) along the line which is the presumed location of the
crack. The superposition of Fig. 1(b) and (c) is thus equal to the original problem in Fig. 1(a).



Z.M. Xiao et al. | International Journal of Solids and Structures 38 (2001) 1369-1394 1371

piezoelectric Gg non-piezoelectric
. 2 .
material matrix

Fig. 1. The physical problem and the superposition procedure.

3. Stress intensity factor of the crack

The stress field due to the crack as shown in Fig. 1(c) can be simulated by a set of continuously dis-
tributed dislocations, and the stress intensity factors on the crack tips are evaluated through the dislocation
density functions.

3.1. Integral equations

Based on Bueckner’s theorem (Hills et al., 1996), the strategy of distributed dislocation technique is to
produce a stress distribution equal to the tractions appearing along the crack faces by distributing dislo-
cations along the crack line. The integral equation for the dislocation disturbance problem is obtained by
using the solution of an edge dislocation interacting with a circular inhomogeneity.

As shown in Fig. 2(a), two edge dislocations with Burger’s vector b, and b, are located at point A
(x = &,y = 0) on the crack line. The stresses induced at the point P(x,y) in the matrix are found from the
corresponding Airy stress functions (Dundurs and Mura, 1964), given by
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Fig. 2. The dislocations b, and b,, and the crack L in the neighborhood of a circular inhomogeneity.
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Now, we assume that the tractions along the crack line L are generated by a set of continuously dis-
tributed dislocations. For convenience, a (z,n) Cartesian coordinate system is created here. It takes the
center of the inhomogeneity as its origin with the r-axis parallel to the crack line L and the n-axis per-
pendicular to the crack line, as shown in Fig. 2(b). The distances from the center of the crack line to the n-
axis and f-axis are w and /, respectively, i.e. 6 = vVw? + h2. 1 is the angle between ¢ axis and the connection
line between centers of the inhomogeneity and the crack. As defined in Fig. 1, the length of L is 2c.

If & = a(s) is the angle between the x-axis and the n-axis, noting that Eqs. (1a)—(1c) are also valid for
(x,y) € L and the point (&,0) corresponds to t =s on L, the normal and tangential stresses on L due to
dislocations b, and b, on L are as follows:

(6a)

(6b)

For simplicity, ¢ and ¢? due to the two edge dislocations can be written in the following forms:
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On the other hand, let ¢¢(¢) and ¢¢(¢) (+ € L) be the normal and tangential components of the stresses
along the line L in Fig. 1(b). According to the solution of Fig. 1(b) given by Xiao and Bai (1999a), we
rearrange the coordinate systems adopted in Fig. 2(b) and (c), and a polar coordinate system (r, ) is in-
troduced. Then, ¢¢(¢) and ¢¢(¢) take the form
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where f is the angle between the n axis and r direction and y is the angle between the crack line and the x,
axis. y is decided by orientation of the crack with respect to the far-field mechanical loading, and
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The functions p;(¢) and p»(¢) in Eq. (10a) and (10b) take the following form:
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in which

r= 2+ (13)

As defined in Fig. 2(b), w is the distance from the center of the crack to n axis. Let B, and B, be the
dislocation density functions of (s) (w — ¢ <s<w+ ¢) along L, using Egs. (8a), (8b) and (10a), (10b), the
stress disturbance problem is thus formulated as
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The single-value condition of displacement vector requires that the density functions in Eqs. (14a) and
(14b) satisty the following relations:

w+tc
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—c
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The combination of Egs. (14a), (14b) and (15a), (15b) gives the solution to the problem in Fig. 1(c) for an
arbitrarily oriented crack.

3.2. Numerical solution procedures of the integral equations

With the substitution of Egs. (92)—(9d) and (7) into Eqs. (14a) and (14b), it is not difficult to show that at
t = s, the kernels in Egs. (14a) and (14b) have Cauchy-type singularities. Apart from the singularity terms,
all the other terms are bounded in the closed interval (w — ¢ < (¢,5) <w + ¢). Separating the singular parts
of the kernels, Egs. (14a), (14b) was rewritten as
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where Hj(t,s) (i,j =1,2) are bounded functions in the closed interval (w —c < (f,5) <w+c), and are
obtained from Egs. (14a) and (14b).

Let ¢ = (t —w)/c, s = (s —w)/c, the interval of Egs. (16a), (16b) can be changed from (w — ¢, w + ¢)
into (—1,1) as follows:
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where py (), py(t), B (s'), B, (s'), H;(¢',s") (i,j =1,2) are, respectively, the corresponding functions of
pi(t), p2(t), B(s), B, (s), Hy(t,s) (i,j =1,2) in the interval (-1, 1). Similarly, Eqgs. (15a) and (15b) can be
written as:

/1 B (s")ds' =0, (18a)

1

1
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As the crack is embedded in the homogeneous isotropic matrix, it is apparent that Egs. (17a) and (17b)
are singular integral equations with an index +1 (Erdogan and Gupta, 1972). Combining with the addi-
tional conditions of Eqs. (18a) and (18b), Egs. (17a) and (17b) can be solved following the Cause-
Chebyshev quadrature (Erdogan and Gupta, 1972).
The fundamental function of the system is
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Hence, the solution of Egs. (17a) and (17b) may be expressed as
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where Fi(s"),F>(s") are bounded functions in the interval (—1, 1) to be evaluated numerically.

According to the Cause—Chebyshev solution, Egs. (17a), (17b) and (18a), (18b) can be written in discreet
form. As a result a group of 2n linear algebra equations with the 2n unknowns Fi(s;) and F(s;) (k =
1,...,n) are obtained:
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To simplify the solution procedure, the constant term ((ko + 1)/2Gp)a), can be removed by defining
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3.3. Stress intensity factor

Following Erdogan et al. (1974), the stress intensity factors at the crack tips can be expressed as

Kilt) =~ \/hzihﬂ w— )R (-1)] (252)
Kult) =~ o F w—e)R(~1) — hR(1)], (25b)
Ki(t) 1+ ko Whﬂ +(w+o)B(1), (25¢)
Ku(t:) — hEy(1)] (254)

1+k0 \/h2 w—l—c

where K7 and Kjj are the Mode I and Mode 11 stress intensity factors of the crack, respectively. ¢ and ¢, refer
to the two crack tips, and #; < f, in the (¢, n) coordinate system. With the substitution of Egs. (23a) and
(23b) into Egs. (25a)—(25d), the stress intensity factor can be expressed as
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F/(1),F/(-1),F;(1),F;(—1) are solved from equation group (24). If the stress intensity factors are nor-
malized by

K} = a%,/c, (27)

which is the stress intensity factor for a uniaxially stressed infinite plane containing a crack of length 2¢
perpendicular to the direction of loading, then it comes that

Ki(n) _  (w=oF(=1) +hF(=1)

) _ ’ (28a)
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L =
K V2 + (wHe)

From the structure of the equation group (24) and the normalized stress intensity factor expressed in
Eqgs. (28a2)—(28d), it can be seen apparently that the stress intensity factors at crack tips are influenced by the
far-field electro-mechanical loading, material properties of the piezoelectric inhomogeneity and the crack,
and the inhomogeneity—crack geometric configuration, etc. In order to understand these influences in detail,
numerical examples are given in the following section under various parameters and geometric configu-
rations.

One thing that should be mentioned here is that in Fig. 2, for the basic solution of edge dislocation—
inhomogeneity interaction used, the inhomogeneity should be made of conventional pure elastic material,
instead of piezoelectric material. As a result, the integral Eqs. (14a) and (14b) based on the single dislo-
cation solution are approximately correct. However, our FEM results show that the error caused is less
than 1%. The reason that the error caused by this approximation is very small can be analyzed as follows:
after the superposition process in Fig. 1, there is no electrical loading in Fig. 1(c). Only the mechanical
traction along the two crack faces in Fig. 1(c) will cause piezoelectric effect on the inhomogeneity. This
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piezoelectric effect will influence the stress field inside the inhomogeneity, thus conversely cause the change
of the stress field near the crack tip. However, this feedback effect is two orders lower than the external
applied loading.

4. Numerical examples and FEM confirmations

It is evident that the stress intensity factors (SIFs) associated with Fig. 1(c) are also the SIFs for the
problem of Fig. 1(a). In this section, the numerical examples of the SIFs under different influence pa-
rameters in three geometric crack—inhomogeneity configurations are presented, and the influence of the
inhomogeneity on the SIF of the crack is discussed. As the derivations are so tedious, it is easy to make
mistakes during the derivation procedures; hence, an independent finite element analysis is performed to
check the results obtained. The finite element program employed is ANsYs version 5.4 (1995).

For both the finite element analysis and numerical examples, the crack length 2c¢ is set to be one-half of
the radius of the inhomogeneity, i.e. ¢ = a/4. The inhomogeneity is made of PZT-5H. The values of ma-
terial constants for PZT-5H are listed in Table 1. Poisson’s ratio of the matrix is assumed to be vy = 1/3.
The far-field in-plane uniaxial tension 69, is used as a normalizing parameter.

The variation ranges of the main influence factors on the SIFs of the crack are selected based on
practical applications of piezoelectric sensor. ej3E /a9, is taken as the normalized far-field electric loading.
Since the piezoelectric constants ej; is negative, e;3E3/ 082 < 0 represents the case that the far electric field £3
is along the x; axis, while e;3E9/09, > 0 is the case that EY is in the opposite direction of x3 axis. Gy and G
are shear moduli of the matrix and the piezoelectric sensor, respectively. As defined in Egs. (4), parameter
m = G1/G, represents the shear modulus ratio of the piezoelectric inhomogeneity to the matrix. m = 0.1
represents the case that the matrix is “harder” than the piezoelectric sensor; m = 10.0 is the case that the
matrix is “softer” than the sensor.

In the finite element analysis, the problem in Fig. 1 is solved directly without the superposition process.
Due to the far-field electric loading along the x; axis, 3-D finite element analysis is employed. The plain
strain condition is achieved by constraining the UZ degree of freedom (displacement in the Z-direction) of
all nodes. The uniform far-field electric loading is applied by constraining the VOLT degree of freedom of
the nodes on the front plane by /] and that on the back plane by V5. The electric field is thus obtained as
E} = (i — 15)/T, in which T is the thickness of the model along the Z-direction. The 3-D coupled-field
SOLID 5 is used to model the piezoelectric inhomogeneity and the 3-D structural SOLID 45 is used for the
surrounding elastic matrix. The macro FRACT is used to create SOLID 95 crack tip element from the
SOLID 45 model using a weighted midside node position (quarter point location). SOLID 95 is the 20-node
brick element for crack tip mesh. The first row of elements around the crack front are singular elements.
For each geometric configuration, a corresponding finite element model is built with different numbers of
elements and nodes. The KCALC command in POST]1 is used to get the SIFs by displacement extrapo-
lation.

4.1. Crack—inhomogeneity interaction configuration I

The first configuration considered is shown in Fig. 3, the crack is perpendicular to the far-field
mechanical loading and is situated near the inhomogeneity, with the crack face and the center of the

Table 1
Material constants of a piezoelectric material C;; (10'° N/m?), ey (C/m?), & (1071° C/V,,)

Cn Cy Cy Ci Ci [2K] €33 eys én €33

PZT-5H 12.6 11.7 3.53 5.5 53 —6.5 233 17.0 151 130
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Fig. 3. Crack-inhomogeneity interaction configuration I.

inhomogeneity being in the same line, i.e. y = 0° in Fig. 2(c) and 42 = 0° in Fig. 2(b). The distance between
the centers of the crack and the inhomogeneity is denoted by 6.

According to the crack orientation, the SIFs can be evaluated directly following the derivation procedure
(Egs. (1)—(28)). For the present configuration, parameters defined in Fig. 2 are as follows:

A=0, y=0, h=0, w=9, c=a/d (29)

Only normal stress exists on the crack surfaces for this configuration, so only the edge dislocation with
Burger’s vector b, is involved. With the substitution of above parameters into Eqs. (1)-(17), the integral
equation is obtained as

Lt 1+ k
/_1 [E PR ¢>(t’,s/)} Bl(s)ds' = — ( 2+Goo> e "
where
/ /_i _ 1 B Bz_] 2_‘32_1 (§+%,)
¢(t,s)4n{ (A+B)2(g+%)[(g+%)(g+%)_1] A 7 [ ; (§+%)(§+%)_11
az(é+SZ/)2 1 1 1 2
a 2% 2~ )+ M +k) =1 31
e hern 1 Er T P T MR 1} (31)

and
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(GO _}:—;?Gl 2G() €13E(3)> 1
(

Gy Gy 0 ) \2
Go + 15, Go+ 15, °+ 9

}. ()

The expression of gf"'(¢) is from Xiao and Bai (1999a) in terms of variable (#) and material constants
Gy, Gy, v, vi. According to Eqgs. (18a) and (18b), the additional condition for the dislocation density
function B (s') is

/1 B/ (s")ds' = 0. (33)

1

oul / 1
ay"(?) :0(2)2{1 "‘i

n Gy — G 3
Go+ (3 —4v0)Gy (2 +4)*

Eq. (31) can be solved in a straightforward manner with the numerical technique explained in Egs. (19)-
(24). The numerical solution of Eq. (30) is denoted by F(s"). However, to reduce the parameters involved in
the solution procedure, some simplifications can be made. By analyzing the structure of the expression
o)™(?) in Eq. (32), it is observed that ¢)"(f)is the linear function of the terms 1/ (8/a+17/4)* and
1/(6/a+ ' /4)* with constant coefficients. Denoting P;(s'), Py(s'), P;(s') as the solution from the following
three sets of linear system, the solution F>(s’) can be obtained as the linear combination of P (s’), P»(s),
Pi(s):

E %PI (Sk) |:t,_15,{ + n¢(trvsk):| =1,
k;] (343)
> Pi(sy) =0,
k=1
Z %Pz(Sk) |:tr*15k + 'ﬂ:(b(lr, Sk):| = (I_Uié)z )
k;] 4la (34b)
> Pr(se) =0,
k=1
and
Z %P3(l‘k) tr—]Sk + n¢(tr7sk) = (ii(j)ﬁl )
=1 #la (34c)

éfg (Sk) =0.

Then, F>(s') is evaluated through

1—21’0
1 +k0) 1 GO — 1-2y Gl 2G0 613E0
Fs':—( 603 Pi(s) 4+ = L 3P (s
e 26, 22{ o)+ Go+1%,  Got+i% o )
3(G0_G1) /
P ) 35
Gt G_dnG ) (35)

Following Eqs. (25)-(28), the normalized Mode I SIFs at both crack tips can be expressed as

1-2v,
Ki(t)) 1| Go—15 G 3(Gy — Gy) GoPy(—1) ez EY
P-4+ | — I " p(_1 Py(—1 " 36
KIO 1( ) " 2 GO + ]_GZI\vl 2( ) " GO + (3 - 4V0>G1 3( ) * GO + 1_621v1 O-(2)2 ’ ( a)
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1-2vg
Ki(%) 1| Go—1=, G 3(Go — Gv)
=P(l)+=z| ———P(1
K? 1 )+2 Go + 155 2 )+G0+ (3 —4v)G,

G()Pz(l) 613E(3)

G, 0 -
G0+172v] 02

Py(1) (36b)

It is noted that P;(£1), Py(£1) and P;(%1) solved from Eqs. (34a)—(34c) are related to the normalized
distance 0/a and material constants in ¢(s',#). The above expressions show that the normalized far-field
electric loading e;3£9 /69, has linear influence on the SIFs at crack tips. This is true with the crack in any
other orientations outside the inhomogeneity. The reason is that the inhomogeneity is made of linear pi-
ezoelectric material and the stress field outside the inhomogeneity is linearly related to ej3E3/a),.

Finite element computation is performed to check the possible errors made due to the tedious deri-
vations. A half model is used because of the symmetry about the x; axis. The mesh of the model is il-
lustrated in Fig. 4, where Fig. 4(a) is the overall 3-D mesh of the model, Fig. 4(b) is a plane view of the
mesh near the inhomogeneity—crack area, and Fig. 4(c) is the mesh near the crack tip. The length of the
element at the crack front is taken as 0.05¢. For the current configuration only Mode I stress intensity
factor K; exists. Comparisons are made between the normalized SIFs K;/K} obtained from the distributed
dislocation technique and FEM, under two sets of material constants combinations as shown in Fig. 5(a)
and (b), where the far-field electric loading is taken to be the same, i.e. el3E8 /032 = 0.1, and the shear
modulus ratio of the inhomogeneity to the matrix is taken as m = 10.0 and m = 0.1, respectively. It is
shown that results obtained through the distributed dislocation theory coincide well with the finite element
analysis.

After the FEM verification, some other numerical calculations involving different parameters are also
performed based purely on the solution procedure described in Egs. (32)—(36). Due to electro-mechanical
coupling behavior of the piezoelectric material, interaction between the piezoelectric inhomogeneity and the
crack is greatly affected by the far-field electric loading. As mentioned above, for the linear piezoelectric
material, the influence of the electric loading on the SIF is linear. When the crack almost touches the pi-
ezoelectric inhomogeneity, the interaction between them becomes the largest. Fig. 6 shows the variation of
Ki /K] at the two crack tips with the normalized far-field electric loading e13E3 /69, when é = a + ¢ + 0.01a,
1.e. the distance between the left crack tip and the inhomogeneity is only 0.01a. It can be seen that when the
matrix is “harder” than the piezoelectric inhomogeneity (Fig. 6(a)), the influence of the far electric field on
the SIF of the left crack tip is much greater than that on the right tip. In this case, the SIFs on both tips are
much bigger than K} (The SIF of the crack without the inhomogeneity, as given in Eq. (27)), and the left tip
is more dangerous than the right one. On the contrary, when the matrix is “softer” than the inhomogeneity
(Fig. 6(b)), the SIFs K at both tips of the crack are smaller than K, and the left tip is safer than the right
tip. So the left tip of the crack undergoes the greatest increase or decrease with the variation of E9 and the
inhomogeneity—matrix elastic modulus ratio. This is logical since the influence of the piezoelectric inho-
mogeneity will be more pronounced to the nearer crack tip.

Fig. 6 indicates that the SIF tends to be infinitely large when the normalized electric loading ej3E9/09,
increases along the positive x; direction. In other words, the crack is very dangerous when EY increases
along the opposite x; axis direction (please note e;3 is negative). On the other hand, the crack propagation
can be arrested if we increase E9 along the positive x; axis direction. In Fig. 7, the interaction between the
crack and the inhomogeneity is considered for EY in the opposite x; direction for different modulus ratios.
When EY is strong in the opposite x; direction, the variation of K;/K} with the normalized distance 6/a is
large. But with increasing distances, the SIF of the crack tends to be constant at 1.0 in any case.

According to the numerical examples, we can see that the electric field plays an important role in the
interaction between the piezoelectric inhomogeneity and the crack. It has a linear relationship to the SIFs of
the crack. But the variation of the SIFs with the electric field is greatly affected by the direction of the
electric field. Only when the far electric field £ increases along a certain direction, the SIF increases. The
extent of the influence of the electric field is decided by the distance between the crack and the inhomo-
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Fig. 4. The finite element model in the case of 2 =0°: (a) the overall 3-D mesh; (b) the mesh near the inhomogeneity and crack area and
(c) the magnified mesh figure near crack tips.

geneity, as well as the material properties of the matrix and the inhomogeneity. When the electric loading is
much weaker than the mechanical loading, i.e. the mechanical loading is dominant, the influence of the
piezoelectric inhomogeneity on the crack is similar to that of an elastic inhomogeneity on a crack.
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Fig. 5. Verification of SIF by FEM analysis in the case of 2= 0° under different material constant ratio: (a) e;3£9 /69, = 0.1, m = 10.0
and (b) e3E3/6%, = 0.1, m =0.1.
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Fig. 6. The SIFs at both crack tips when the crack almost touches the piezoelectric inhomogeneity (6 = a + ¢ + 0.01a) under different
elastic modulus ratio: (a) m=10.0 and (b) m=0.1.

4.2. Crack—inhomogeneity interaction configuration II

The second configuration considered is shown in Fig. 8, where the crack face is perpendicular to the far-
field mechanical loading and it is directly above the inhomogeneity, with the connection line between the
centers of the crack and the inhomogeneity being perpendicular to the crack face, i.e. y=0° in Fig. 2(c) and
A=90° in Fig. 2(b). Other parameters defined in Fig. 2 are as follows:

h=0, w=0, c=a/d (37)

With the substitution of these parameters into the derivation procedure (Egs. (1)—(28)), equations similar to
Egs. (36a) and (36b) on the SIFs at the two crack tips can be obtained. Since the formulation procedure is
similar and parallel to that of Configuration I described in the previous sub-section, here we present only
the numerical results and omit the detailed equation.
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Fig. 7. Variation of K;/K? with 6/a when 4 =0° under different far field electric loading: (a) e;3E/0%, = 0.1; (b) e13£9 /05, = 10.0.

FEM analysis is again performed to check possible errors made due to the tedious derivations. A half-
model is used as the problem is symmetric about x, axis. The mesh of the model is illustrated in Fig. 9,
where Fig. 9(a) is the overall 3-D mesh of the model, Fig. 9(b) is a plane view of the mesh near the in-
homogeneity—crack area, and Fig. 9(c) is the mesh near crack tips. The length of the element at the crack
front is taken as ¢/8. For this configuration, both Mode I and Mode II stress intensity factors exist.

0
G22
. . A non-piezoelectric
piezoelectric matrix
material

2

v V
0

G

Fig. 8. Crack-inhomogeneity interaction configuration II.
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Fig. 9. Finite element model in the case of 4

magnified mesh figure near the crack tip.

and Ky /K7 is presented in Figs.

10 and 11, respectively. From the verification results, it can be concluded that results obtained through

distributed dislocation theory coincide well with finite element analysis.

0

I

Comparisons are made between the normalized SIFs obtained from the distributed dislocation technique

and FEM under two different conditions. The verification results of K/

The present configuration involves both Mode I and Mode 11 stress intensity factors. Fig. 12 shows the
comparison of Kj and Kj at the crack tip. It can be seen that the changing tendency of Kj; with the external
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conditions is very similar to that of Kj. It also shows that Kj; is much smaller than K7 and tends to be zero
with an increase in distance J. This phenomenon is evident, as the applied loading is perpendicular to the
crack face. The following analysis will focus on the Mode I stress intensity factor.

Due to the electro-mechanical coupling behavior of the piezoelectric material, interaction between the
inhomogeneity and the crack is greatly affected by the far-field electric loading. Fig. 13 shows the variation
of the normalized SIF K;/K} with the normalized distance J/a under the conditions ej3E9 /09, = 2.0 and
enE}/ad, = —2.0, respectively. A comparison of Fig. 13(a) and (b) shows that the SIF of the crack is much
smaller at positive ej3E /69, value than that at negative e3E3 /05, value. Since K;/K] is linearly related to
the far-field electric loading for linear piezoelectric inhomogeneity, the SIF of the crack will increase lin-
early when the far electric field £9 increases along the positive x; direction (as e3 is negative), which is in
contrast to the case shown in Fig. 6. So, EY along the opposite x; direction can protect the crack from
propagation for the current configuration.

The distance ¢ between the inhomogeneity and the crack is also a main factor to influence the SIF of the
crack. The effect of the inhomogeneity to the crack weakens as J increases. The normalized SIF K;/K; tends
to be 1.0 when ¢ goes to infinity. This means that the interaction between the crack and the inhomogeneity
ceases after some distance.

Apart from the influence of the far-field electric loading and the distance o, the SIF is also related to the
materials properties. When m = 0.1 and d/a is in small value, K; /K increases sharply with /a as shown in
Fig. 13(a), whereas it drops quickly with ¢/« in Fig. 13(b) for reversed electric loading. This can demon-
strate that the interaction between the crack and the piezoelectric inhomogeneity responds sensitively to the
varying external conditions when the piezoelectric inhomogeneity is ‘“‘softer” than the matrix. When
m = 10.0, K;/K} varies marginally with the increasing J/a. In other words, the variation of K;/K} with /a
is not that sensitive to electric loading when the inhomogeneity is “harder” than the matrix. However, Fig.
13 also indicates that for m = 10.0, the Mode I SIF K; is always higher than K}, which means a “harder”
inhomogeneity makes the crack easier to propagate for this configuration.

4.3. Crack—inhomogeneity interaction configuration II1

The third configuration studied is shown in Fig. 14, the crack is perpendicular to the far-field mechanical
loading and it is located at an oblique angle 45° with reference to the connection line between the centers of
the crack and the inhomogeneity. For the present configuration, parameters defined in Fig. 2 are as follows:

08 i

=

=

06|
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02f

-0.2

8 10 12 14 16
8 /a

@ (®
Fig. 13. Variation of Kj with § when =90 (a) ej3£/069, = 2.0 and (b) e;3£3 /0%, = —2.0.
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g. 14. Crack-inhomogeneity interaction configuration III.

=45 y=0, h=03/V2, w=03/V2, c=als (38)

With the substitution of these parameters into Egs. (1)-(28), by procedures similar to the previous two sub-
sections, numerical results for the SIFs are obtained parallel.

FEM analysis is performed again to check the tedious derivations. A full model is employed for the finite
element analysis. The mesh of the model is illustrated in Fig. 15, where Fig. 15(a) is the overall 3-D mesh of
the model, Fig. 15(b) is a plane view of the mesh near the piezoelectric-crack area and Fig. 15(c) is the mesh
near the crack tip. The length of the element at the crack front is taken as ¢/8. For this configuration, both
Mode I and Mode II stress intensity factors exist. Comparisons are made between the normalized SIFs
obtained from the distributed dislocation technique and FEM under two sets of parameters. The verifi-
cation results of K; /KIO and K /K{’ is presented in Figs. 16 and 17, respectively. It is clear that results
obtained through distributed dislocation theory coincide well with finite element analysis.

The present configuration involves both Mode I and Mode II SIFs, and the values at the two crack tips
are different. The difference of the SIFs at the two crack tips is shown in Fig. 18, where Fig. 18(a) refers to
K; and Fig. 18(b) refers to Kj;. From Fig. 18, it can be seen that both Kj and Kj; have similar changing
tendencies at two crack tips. Also, K at the left tip is larger while Kj; is smaller than those at the right tip.
Since Kjp is much smaller than Kj, the Mode I SIF at the left tip is more important for crack propagation.
Our following discussions concentrate on the left crack tip. Fig. 19 shows the comparison of Kj and Kj; at
the left tip. It can be seen that the changing tendency of Kj; with the external conditions is very similar to
that of Kj. It also shows that Ky is much smaller than K;. Ky tends to be zero with an increase in distance d.
This phenomenon is evident, as the applied loading is perpendicular to the crack face. So, the following
analysis focuses on the Mode I stress intensity factor at the left crack tip.

Fig. 20 shows the variation of the normalized SIF K;/K} with the normalized distance d/a under the
conditions e3EY /a5, = —2.0 and ej3EY/09, = 2.0, respectively. It can be seen that the variation of SIF with
the external conditions is quite similar to that in the case shown in Fig. 8. However, Fig. 20 indicates that
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crack area; (c) the magnified mesh figure near crack tips.

which means a “harder”

inhomogeneity can shield the crack from propagating. However, when m = 0.1 and § > 2a, K] is always
greater than K, which means a “‘softer” inhomogeneity make the crack easier to propagate.

0
I°

for m = 10.0, the Mode I stress intensity factor Kj is always smaller than
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Fig. 17. Verification of Ky for 2=45°% (a) e;3E3/0%, = 0.1, m = 0.1 and (b) ej3E3/05, = 5.0, m =0.1.

To compare the inhomogeneity—crack interaction for the three configurations, Fig. 21 summarizes the
variation of K;/K{ with normalized distance J/a for the three cases. The following can be seen:

1. No matter where the position of the crack is, the influence of the inhomogeneity weakens with the in-
creasing distance between them.

2. Under different normalized far-field electric loading e13E2 /a9, and shear modulus ratio m, the variation
of K1 /K with é/a at 2 =45° is more stable than those at A= 0° and 4 =90°. The inhomogeneity has larg-
er influence for 2=0° and 4A=90° than that for 1=45°.

3. When 4=0°, the SIFs at crack tips increase as the far-field electric loading increases along the opposite

x5 direction, whereas the SIFs increase with the increasing electric loading along positive x3 direction
when 4=90°.
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and (b) Kj; at the two crack tips under the condition: e3E3 /69, = —2.0, m = 0.1.
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Fig. 21. Comparison of SIFs for the three geometrical configurations: (a) e;3E9 /0%, = —2.0, m = 10.0; (b) e3E3/a3, = 2.0, m = 10.0;
(c) e13EY/0%, = —2.0, m = 0.1 and (d) e;3E) /0%, = 2.0, m =0.1.

4. When 2 =90°, the SIF increases with increasing material moduli of the inhomogeneity. In other words,
the crack is easier to propagate with a “harder” inhomogeneity. When 1 =0°, a “softer”” inhomogeneity
can always make the crack easier to propagate.

5. Conclusion

The interaction problem of a cylindrical piezoelectric inhomogeneity embedded in an infinite non-pi-
ezoelectric matrix containing a crack is investigated. With the crack perpendicular to the far-field me-
chanical loading, three typical configurations are considered. The analytical solutions obtained have been
verified through the finite element analysis. The investigations show that interaction between the crack and
the piezoelectric inhomogeneity is influenced by the geometrical configuration, the far-field electric and
mechanical loading, as well as the material properties of the inhomogeneity and the matrix. Numerical
calculations on the interaction are carried out based on various influence parameters. Results obtained
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might be applied on design of piezoelectric sensors to detect possible defects in solids or to use piezoelectric
fiber to arrest crack propagation in composite materials.
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