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Abstract

The current study investigates the interaction problem of a ®ber-shaped piezoelectric inhomogeneity embedded in a

non-piezoelectric elastic matrix, which contains a crack. The matrix is assumed to be in®nite in all directions and the

crack is near the piezoelectric ®ber. Di�erent geometrical crack±inhomogeneity con®gurations are considered. The body

is subjected to a far-®eld in-plane tension and a far-®eld anti-plane electric ®eld. With the solution of stress ®eld for a

piezoelectric inhomogeneity embedded in an elastic matrix, the solution of current problem is obtained through a

decomposition process. A set of singular integral equations in the crack domain is derived through the dislocation

theory. The expressions for the stress intensity factors are then obtained in terms of the asymptotic values of dislocation

density functions solved from these integral equations. Numerical examples indicate that interaction between the pi-

ezoelectric inhomogeneity and the crack is in¯uenced by many factors, such as the con®guration, the material properties

of the piezoelectric inhomogeneity and matrix, as well as the far-®eld electrical and mechanical loadings. The stress

intensity factors on crack tips obtained have been checked and con®rmed by ®nite element analysis. Ó 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Along with the widespread applications of piezoelectric materials and piezoelectric composites, the
electro-elastic analysis of such materials becomes one of the most important problems in engineering. Due
to their intrinsic electro-mechanical coupling behavior, piezoelectric materials have been widely used as
resonators, actuators and sensors, among which sensor is the most common application. When piezo-
electric materials are used as sensors, they are usually embedded in non-piezoelectric materials. Because of
the electro-mechanical interaction between the sensor and the surrounding material, the properties of the
surrounding material may in¯uence the response of the sensor to external load. According to this phe-
nomenon, the sensor can be used to detect possible defects in the surrounding material. So, it is desirable to
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understand the interaction between the piezoelectric sensor and a near-by ¯aw in the matrix. This is the
main objective of the current investigation.

It is worthwhile to summarize the previous work directly related to present study in open literature.
Extension of the well-known Eshelby (1957) ellipsoidal inhomogeneity solution for elasticity to piezo-
electric material has been done by Wang (1992). Due to the complexity of the problem, conclusions drawn
based on his formulation are general. In the three-dimensional formulation of Wang (1992), both the in-
homogeneity and matrix are piezoelectric materials, and he reached the result that all the ®eld variables are
uniform inside the inclusion. However, the general anisotropy and coupling of mechanical and electrical
®elds have limited further extension of his work. Some simpli®cation has to be made for a speci®c problem
in order to gain an insight into the problem. When a piezoelectric material is used as a sensor, the matrix is
most likely to be a non-piezoelectric material. Fan (1995) analyzed a piezoelectric ellipsoidal sensor em-
bedded in a non-piezoelectric elastic matrix via equivalent inclusion method. The assumption of no electro-
mechanical interaction in the matrix material simpli®ed the formulation compared to WangÕs work (1992).
The original piezoelectric inhomogeneity problem is partially decoupled into an elastic problem and a
dielectric problem connected via some ``eigenstrain'' and ``eigenelectric ®eld''.

In our previous work, following Wang (1992) and Fan (1995), the stress ®eld outside a piezoelectric
inhomogeneity embedded in non-piezoelectric matrix is evaluated (Xiao and Bai, 1999a); then, the stress
®eld and stress intensity factor for a Gri�th crack located near a piezoelectric inhomogeneity are obtained
for a simple crack±inhomogeneity con®guration (Xiao and Bai, 1999b). The present study aims to extend
the work of Xiao and Bai (1999b) to generalized inhomogeneity±crack geometric con®guration, and give a
generic solution method to piezoelectric inhomogeneity±crack interaction problem. It is worth mentioning
that in the problem solved by Xiao and Bai (1999b), the crack is located symmetrically relative to the
piezoelectric ®ber sensor, no Mode II stress intensity factor exists at the crack tip. While for the current
study, the analytical method developed can be applied to any general case that crack is located with random
orientation near the piezoelectric sensor. As a result, the formulation here is much more complex and both
Mode I and Mode II stress intensity factors exist at the crack tip. As mentioned in the beginning of this
section, the engineering application of the current study is to use piezoelectric sensors to detect the possible
near-by-micro crack. As the crack orientation is unknown in advance, the investigation in this paper can
better serve the practical engineering application purpose.

2. Physical problem and decomposition process

The physical problem to be investigated is shown in Fig. 1(a), where the solid is assumed in a plane strain
state. The matrix is an isotropic elastic material. The inhomogeneity is transversely isotropic piezoelectric
material (with x3 as the poling axis) in cylindrical shape with radius a and in®nite length. The crack with
length 2c is arbitrarily oriented on x1x2 plane. A parameter d is used to denote the distance between the
centers of the inhomogeneity and the crack. The matrix is subjected to a far-®eld in-plane uniform tension
r0

22 and anti-plane electric ®eld E0
3. The coordinate used here is plane coordinate system (x1; x2) with the

origin at the center of the inhomogeneity.
As the matrix is a purely elastic material, there is no mechanical-electric coupling behavior inside the

matrix. By employing a superposition process (Hills et al., 1996), the original problem shown in Fig. 1(a)
can be obtained through the sum of two sub-problems, as shown in Fig. 1(b) and (c), respectively. The
problem shown in Fig. 1(b) is a piezoelectric inhomogeneity embedded in the matrix without the crack. The
solution of this problem can be found in Xiao and Bai (1999a). For the second sub-problem shown in Fig.
1(c), the only external loads are the crack surface tractions which are equal in magnitude and opposite in
sign to the stresses obtained in the problem Fig. 1(b) along the line which is the presumed location of the
crack. The superposition of Fig. 1(b) and (c) is thus equal to the original problem in Fig. 1(a).
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3. Stress intensity factor of the crack

The stress ®eld due to the crack as shown in Fig. 1(c) can be simulated by a set of continuously dis-
tributed dislocations, and the stress intensity factors on the crack tips are evaluated through the dislocation
density functions.

3.1. Integral equations

Based on BuecknerÕs theorem (Hills et al., 1996), the strategy of distributed dislocation technique is to
produce a stress distribution equal to the tractions appearing along the crack faces by distributing dislo-
cations along the crack line. The integral equation for the dislocation disturbance problem is obtained by
using the solution of an edge dislocation interacting with a circular inhomogeneity.

As shown in Fig. 2(a), two edge dislocations with BurgerÕs vector bx and by are located at point A
(x � n; y � 0) on the crack line. The stresses induced at the point P �x; y� in the matrix are found from the
corresponding Airy stress functions (Dundurs and Mura, 1964), given by

p�k0 � 1�
G0

�ryy�x; y; n� � hyy1�x; y; n�bx � hyy2�x; y; n�by ; �1a�

p�k0 � 1�
G0

�rxx�x; y; n� � hxx1�x; y; n�bx � hxx2�x; y; n�by ; �1b�

p�k0 � 1�
G0

�rxy�x; y; n� � hxy1�x; y; n�bx � hxy2�x; y; n�by ; �1c�
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Fig. 1. The physical problem and the superposition procedure.
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Fig. 2. The dislocations bx and by , and the crack L in the neighborhood of a circular inhomogeneity.
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Now, we assume that the tractions along the crack line L are generated by a set of continuously dis-
tributed dislocations. For convenience, a �t; n� Cartesian coordinate system is created here. It takes the
center of the inhomogeneity as its origin with the t-axis parallel to the crack line L and the n-axis per-
pendicular to the crack line, as shown in Fig. 2(b). The distances from the center of the crack line to the n-
axis and t-axis are w and h, respectively, i.e. d � ����������������

w2 � h2
p

. k is the angle between t axis and the connection
line between centers of the inhomogeneity and the crack. As de®ned in Fig. 1, the length of L is 2c.

If a � a�s� is the angle between the x-axis and the n-axis, noting that Eqs. (1a)±(1c) are also valid for
�x; y� 2 L and the point (n; 0) corresponds to t � s on L, the normal and tangential stresses on L due to
dislocations bx and by on L are as follows:

rb
n � �rxx cos2a� �ryy sin2a� 2�rxy sinacosa; �6a�

rb
t � ��ryy ÿ �rxx� sinacosa� �rxy�cos2aÿ sin2a�; �6b�

where
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For simplicity, rb
n and rb

t due to the two edge dislocations can be written in the following forms:

Z.M. Xiao et al. / International Journal of Solids and Structures 38 (2001) 1369±1394 1373



rb
n�t; s� � hn1�t; s�bx � hn2�t; s�by ; �8a�

rb
t �t; s� � ht1�t; s�bx � ht2�t; s�by ; �8b�

where

hn1�t; s� � hxx1 cos2a� hyy1 sin2a� 2hxy1 sinacosa; �9a�

hn2�t; s� � hxx2 cos2a� hyy2 sin2a� 2hxy2 sinacosa; �9b�

ht1�t; s� � �hyy1 ÿ hxx1� sinacosa� hxy1�cos2aÿ sin2a�; �9c�

ht2�t; s� � �hyy2 ÿ hxx2� sinacosa� hxy2�cos2aÿ sin2a�: �9d�
On the other hand, let rc

n�t� and rc
t �t� (t 2 L) be the normal and tangential components of the stresses

along the line L in Fig. 1(b). According to the solution of Fig. 1(b) given by Xiao and Bai (1999a), we
rearrange the coordinate systems adopted in Fig. 2(b) and (c), and a polar coordinate system �r; h� is in-
troduced. Then, rc

n�t� and rc
t �t� take the form
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where b is the angle between the n axis and r direction and c is the angle between the crack line and the x1

axis. c is decided by orientation of the crack with respect to the far-®eld mechanical loading, and
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The functions p1�t� and p2�t� in Eq. (10a) and (10b) take the following form:
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in which
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: �13�

As de®ned in Fig. 2(b), w is the distance from the center of the crack to n axis. Let Bx and By be the
dislocation density functions of (s) (wÿ c6 s6w� c) along L, using Eqs. (8a), (8b) and (10a), (10b), the
stress disturbance problem is thus formulated as
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ÿr0
22 p1�t� �

Z w�c
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The single-value condition of displacement vector requires that the density functions in Eqs. (14a) and
(14b) satisfy the following relations:Z w�c

wÿc
Bx�s�ds � 0; �15a�

Z w�c

wÿc
By�s�ds � 0: �15b�

The combination of Eqs. (14a), (14b) and (15a), (15b) gives the solution to the problem in Fig. 1(c) for an
arbitrarily oriented crack.

3.2. Numerical solution procedures of the integral equations

With the substitution of Eqs. (9a)±(9d) and (7) into Eqs. (14a) and (14b), it is not di�cult to show that at
t � s, the kernels in Eqs. (14a) and (14b) have Cauchy-type singularities. Apart from the singularity terms,
all the other terms are bounded in the closed interval (wÿ c6 �t; s�6w� c). Separating the singular parts
of the kernels, Eqs. (14a), (14b) was rewritten as
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where Hij�t; s� �i;j � 1; 2� are bounded functions in the closed interval (wÿ c6 �t; s�6w� c), and are
obtained from Eqs. (14a) and (14b).

Let t0 � �t ÿ w�=c, s0 � �sÿ w�=c, the interval of Eqs. (16a), (16b) can be changed from �wÿ c;w� c�
into �ÿ1; 1� as follows:
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p k0 � 1� �
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where p01�t0�; p02�t0�;B0x�s0�;B0y�s0�;H 0ij�t0; s0� �i; j � 1; 2� are, respectively, the corresponding functions of
p1�t�; p2�t�;Bx�s�;By�s�;Hij�t; s� �i; j � 1; 2� in the interval (ÿ1; 1). Similarly, Eqs. (15a) and (15b) can be
written as:Z 1

ÿ1

B0x�s0�ds0 � 0; �18a�

Z 1

ÿ1

B0y�s0�ds0 � 0: �18b�

As the crack is embedded in the homogeneous isotropic matrix, it is apparent that Eqs. (17a) and (17b)
are singular integral equations with an index �1 (Erdogan and Gupta, 1972). Combining with the addi-
tional conditions of Eqs. (18a) and (18b), Eqs. (17a) and (17b) can be solved following the Cause±
Chebyshev quadrature (Erdogan and Gupta, 1972).

The fundamental function of the system is

x s0
ÿ � � 1

ÿ � s0
�ÿ1=2

1
ÿ ÿ s0

�ÿ1=2
: �19�

Hence, the solution of Eqs. (17a) and (17b) may be expressed as

B0x�s0� � F1�s0�x�s0�; �20a�

B0y�s0� � F2�s0�x�s0�; �20b�
where F1�s0�;F2�s0� are bounded functions in the interval (ÿ1; 1) to be evaluated numerically.

According to the Cause±Chebyshev solution, Eqs. (17a), (17b) and (18a), (18b) can be written in discreet
form. As a result a group of 2n linear algebra equations with the 2n unknowns F1�sk� and F2�sk� �k �
1; . . . ; n) are obtained:Pn

k�1

1
n F1�sk� h������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p

h H 011�tr; sk�
� �

�Pn
k�1

1
n F2�sk� �csk�w�������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p

csk�w H 012�tr; sk�
� �

� �k0�1�
2G0

r0
22p01�tr�;Pn

k�1

1
n F1�sk� �csk�w�������������������

h2��csk�w�2
p ÿ 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p
�csk�w� H 021�tr; sk�

� �
�Pn

k�1

1
n F2�sk� h������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p

h H 022�tr; sk�
� �

� �k0�1�
2G0

r0
22p02�tr�;Pn

k�1

F1�sk� � 0;Pn
k�1

F2�sk� � 0;

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

�21�

where
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sk � cos
�2k ÿ 1�p

2n
; k � 1; . . . ; n; tr � cos

p r
n
; r � 1; . . . ; nÿ 1: �22�

To simplify the solution procedure, the constant term ��k0 � 1�=2G0�r0
22 can be removed by de®ning

F1�sk� � �k0 � 1�
2G0

r0
22F 01�sk�; �23a�

F2�sk� � �k0 � 1�
2G0

r0
22F 02�sk�: �23b�

Then Eqs. (21) are thus simpli®ed asPn
k�1

1
n F 01�sk� h������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p

h H 011�tr; sk�
� �

�Pn
k�1

1
n F 02�sk� �csk�w�������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�d�2
p

csk�w H 012�tr; sk�
� �

� p01�tr�;Pn
k�1

1
n F 01�sk� �csk�w�������������������

h2��csk�w�2
p ÿ 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p
�csk�w� H 021�tr; sk�

� �
�Pn

k�1

1
n F 02�sk� h������������������

h2��csk�w�2
p 1

skÿtr
ÿ c

������������������
h2��csk�w�2
p

h H 022�tr; sk�
� �

� p02�tr�;Pn
k�1

F 01�sk� � 0;Pn
k�1

F 02�sk� � 0:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

�24�

3.3. Stress intensity factor

Following Erdogan et al. (1974), the stress intensity factors at the crack tips can be expressed as

KI�t1� � ÿ 2G0

1� k0

���
c
p���������������������������

h2 � �wÿ c�2
q �hF1�ÿ1� � �wÿ c�F2�ÿ1��; �25a�

KII�t1� � ÿ 2G0

1� k0

���
c
p���������������������������

h2 � �wÿ c�2
q ��wÿ c�F1�ÿ1� ÿ hF2�ÿ1��; �25b�

KI�t2� � 2G0

1� k0

���
c
p���������������������������

h2 � �w� c�2
q �hF1�1� � �w� c�F2�1��; �25c�

KII�t2� � 2G0

1� k0

���
c
p���������������������������

h2 � �w� c�2
q ��w� c�F1�1� ÿ hF2�1�� �25d�

where KI and KII are the Mode I and Mode II stress intensity factors of the crack, respectively. t1 and t2 refer
to the two crack tips, and t1 < t2 in the (t, n) coordinate system. With the substitution of Eqs. (23a) and
(23b) into Eqs. (25a)±(25d), the stress intensity factor can be expressed as
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KI�t1� � ÿr0
22

���
c
p���������������������������

h2 � �wÿ c�2
q �hF 01�ÿ1� � �wÿ c�F 02�ÿ1��; �26a�

KII�t1� � ÿr0
22

���
c
p���������������������������

h2 � �wÿ c�2
q ��wÿ c�F 01�ÿ1� ÿ hF 02�ÿ1��; �26b�

KI�t2� � r0
22

���
c
p���������������������������

h2 � �w� c�2
q �hF 01�1� � �w� c�F 02�1��; �26c�

KII�t2� � r0
22

���
c
p���������������������������

h2 � �w� c�2
q ��w� c�F 01�1� ÿ hF 02�1��: �26d�

F 01�1�; F 01�ÿ1�; F 02�1�; F 02�ÿ1� are solved from equation group (24). If the stress intensity factors are nor-
malized by

K0
I � r0

22

���
c
p
; �27�

which is the stress intensity factor for a uniaxially stressed in®nite plane containing a crack of length 2c
perpendicular to the direction of loading, then it comes that

KI�t1�
K0

I

� ÿ�wÿ c�F 02�ÿ1� � hF 01�ÿ1����������������������������
h2 � �wÿ c�2

q ; �28a�

KII�t1�
K0

I

� ÿ�wÿ c�F 01�ÿ1� ÿ hF 02�ÿ1����������������������������
h2 � �wÿ c�2

q ; �28b�

KI�t2�
K0

I

� �w� c�F 02�1� � hF 01�1����������������������������
h2 � �w� c�2

q ; �28c�

KII�t2�
K0

I

� �w� c�F 01�1� ÿ hF 02�1����������������������������
h2 � �w� c�2

q : �28d�

From the structure of the equation group (24) and the normalized stress intensity factor expressed in
Eqs. (28a)±(28d), it can be seen apparently that the stress intensity factors at crack tips are in¯uenced by the
far-®eld electro-mechanical loading, material properties of the piezoelectric inhomogeneity and the crack,
and the inhomogeneity±crack geometric con®guration, etc. In order to understand these in¯uences in detail,
numerical examples are given in the following section under various parameters and geometric con®gu-
rations.

One thing that should be mentioned here is that in Fig. 2, for the basic solution of edge dislocation±
inhomogeneity interaction used, the inhomogeneity should be made of conventional pure elastic material,
instead of piezoelectric material. As a result, the integral Eqs. (14a) and (14b) based on the single dislo-
cation solution are approximately correct. However, our FEM results show that the error caused is less
than 1%. The reason that the error caused by this approximation is very small can be analyzed as follows:
after the superposition process in Fig. 1, there is no electrical loading in Fig. 1(c). Only the mechanical
traction along the two crack faces in Fig. 1(c) will cause piezoelectric e�ect on the inhomogeneity. This
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piezoelectric e�ect will in¯uence the stress ®eld inside the inhomogeneity, thus conversely cause the change
of the stress ®eld near the crack tip. However, this feedback e�ect is two orders lower than the external
applied loading.

4. Numerical examples and FEM con®rmations

It is evident that the stress intensity factors (SIFs) associated with Fig. 1(c) are also the SIFs for the
problem of Fig. 1(a). In this section, the numerical examples of the SIFs under di�erent in¯uence pa-
rameters in three geometric crack±inhomogeneity con®gurations are presented, and the in¯uence of the
inhomogeneity on the SIF of the crack is discussed. As the derivations are so tedious, it is easy to make
mistakes during the derivation procedures; hence, an independent ®nite element analysis is performed to
check the results obtained. The ®nite element program employed is ANSYSANSYS version 5.4 (1995).

For both the ®nite element analysis and numerical examples, the crack length 2c is set to be one-half of
the radius of the inhomogeneity, i.e. c � a=4. The inhomogeneity is made of PZT-5H. The values of ma-
terial constants for PZT-5H are listed in Table 1. PoissonÕs ratio of the matrix is assumed to be m0 � 1=3.
The far-®eld in-plane uniaxial tension r0

22 is used as a normalizing parameter.
The variation ranges of the main in¯uence factors on the SIFs of the crack are selected based on

practical applications of piezoelectric sensor. e13E0
3=r

0
22 is taken as the normalized far-®eld electric loading.

Since the piezoelectric constants e13 is negative, e13E0
3=r

0
22 < 0 represents the case that the far electric ®eld E0

3

is along the x3 axis, while e13E0
3=r

0
22 > 0 is the case that E0

3 is in the opposite direction of x3 axis. G0 and G1

are shear moduli of the matrix and the piezoelectric sensor, respectively. As de®ned in Eqs. (4), parameter
m � G1=G0 represents the shear modulus ratio of the piezoelectric inhomogeneity to the matrix. m � 0:1
represents the case that the matrix is ``harder'' than the piezoelectric sensor; m � 10:0 is the case that the
matrix is ``softer'' than the sensor.

In the ®nite element analysis, the problem in Fig. 1 is solved directly without the superposition process.
Due to the far-®eld electric loading along the x3 axis, 3-D ®nite element analysis is employed. The plain
strain condition is achieved by constraining the UZ degree of freedom (displacement in the Z-direction) of
all nodes. The uniform far-®eld electric loading is applied by constraining the VOLT degree of freedom of
the nodes on the front plane by V1 and that on the back plane by V2. The electric ®eld is thus obtained as
E0

3 � �V1 ÿ V2�=T , in which T is the thickness of the model along the Z-direction. The 3-D coupled-®eld
SOLID 5 is used to model the piezoelectric inhomogeneity and the 3-D structural SOLID 45 is used for the
surrounding elastic matrix. The macro FRACT is used to create SOLID 95 crack tip element from the
SOLID 45 model using a weighted midside node position (quarter point location). SOLID 95 is the 20-node
brick element for crack tip mesh. The ®rst row of elements around the crack front are singular elements.
For each geometric con®guration, a corresponding ®nite element model is built with di�erent numbers of
elements and nodes. The KCALC command in POST1 is used to get the SIFs by displacement extrapo-
lation.

4.1. Crack±inhomogeneity interaction con®guration I

The ®rst con®guration considered is shown in Fig. 3, the crack is perpendicular to the far-®eld
mechanical loading and is situated near the inhomogeneity, with the crack face and the center of the

Table 1

Material constants of a piezoelectric material Cij (1010 N/m2), ekl (C/m2), e11 (10ÿ10 C/Vm)

C11 C33 C44 C12 C13 e13 e33 e15 e11 e33

PZT-5H 12.6 11.7 3.53 5.5 5.3 ÿ6.5 23.3 17.0 151 130
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inhomogeneity being in the same line, i.e. c � 0� in Fig. 2(c) and k � 0� in Fig. 2(b). The distance between
the centers of the crack and the inhomogeneity is denoted by d.

According to the crack orientation, the SIFs can be evaluated directly following the derivation procedure
(Eqs. (1)±(28)). For the present con®guration, parameters de®ned in Fig. 2 are as follows:

k � 0; c � 0; h � 0; w � d; c � a=4: �29�

Only normal stress exists on the crack surfaces for this con®guration, so only the edge dislocation with
BurgerÕs vector by is involved. With the substitution of above parameters into Eqs. (1)±(17), the integral
equation is obtained asZ 1

ÿ1

1

p
1

t0 ÿ s0

�
� /�t0; s0�

�
B0y�s0�ds0 � ÿ �1� k0�

2G0

rout
h ; �30�

where

/�t0; s0� � 1

4p

(
ÿ �A� B� 1

2�da� t0
4
���da� t0

4
��da� s0

4
� ÿ 1� ÿ A

b2 ÿ 1

b3
b2

"
ÿ b2 ÿ 1

b

�da� s0
4
�

�da� s0
4
��da� t0

4
� ÿ 1

#

� a2�da� s0
4
�2

��da� s0
4
��da� t0

4
� ÿ 1�2 � A

1

�da� t0
4
�3 �

1

2b
1

�da� t0
4
�2 �A�2b2 ÿ 1� � M�1� k1� ÿ 1�

)
�31�

and

Fig. 3. Crack±inhomogeneity interaction con®guration I.
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rout
h �t0� � r0

22 1

(
� 1

2

G0 ÿ 1ÿ2m0

1ÿ2m1
G1

G0 � G1

1ÿ2m1

 "
� 2G0

G0 � G1

1ÿ2m1

e13E0
3

r0
22

!
1

�da� t0
4
�2

� G0 ÿ G1

G0 � �3ÿ 4m0�G1

3

�da� t0
4
�4
#)

: �32�

The expression of rout
h �t0� is from Xiao and Bai (1999a) in terms of variable (t0) and material constants

G0;G1; m0; m1. According to Eqs. (18a) and (18b), the additional condition for the dislocation density
function B0y�s0� isZ 1

ÿ1

B0y�s0�ds0 � 0: �33�

Eq. (31) can be solved in a straightforward manner with the numerical technique explained in Eqs. (19)±
(24). The numerical solution of Eq. (30) is denoted by F2�s0�. However, to reduce the parameters involved in
the solution procedure, some simpli®cations can be made. By analyzing the structure of the expression
rout

h �t0� in Eq. (32), it is observed that rout
h �t0�is the linear function of the terms 1=�d=a� t0=4�2 and

1=�d=a� t0=4�4 with constant coe�cients. Denoting P1�s0�, P2�s0�, P3�s0� as the solution from the following
three sets of linear system, the solution F2�s0� can be obtained as the linear combination of P1�s0�, P2�s0�,
P3�s0�: Pn

k�1

1
n P1�sk� 1

trÿsk
� p/�tr; sk�

h i
� 1;Pn

k�1

P1�sk� � 0;

8>><>>: �34a�

Pn
k�1

1
n P2�sk� 1

trÿsk
� p/�tr; sk�

h i
� 1

�tr
4
�d

a�2
;Pn

k�1

P2�sk� � 0;

8>><>>: �34b�

and Pn
k�1

1
n P3�tk� 1

trÿsk
� p/�tr; sk�

h i
� 1

�tr
4
�d

a�4
;Pn

k�1

P3�sk� � 0:

8>><>>: �34c�

Then, F2�s0� is evaluated through

F2�s0� � ÿ �1� k0�
2G0

r0
22 P1�s0�
(

� 1

2

G0 ÿ 1ÿ2m0

1ÿ2m1
G1

G0 � G1

1ÿ2m1

 "
� 2G0

G0 � G1

1ÿ2m1

e13E0
3

r0
22

!
P2�s0�

� 3�G0 ÿ G1�
G0 � �3ÿ 4m0�G1

P3�s0�
#)

: �35�

Following Eqs. (25)±(28), the normalized Mode I SIFs at both crack tips can be expressed as

KI�t1�
K0

I

� P1�ÿ1� � 1

2

G0 ÿ 1ÿ2m0

1ÿ2m1
G1

G0 � G1

1ÿ2m1

P2�
"

ÿ 1� � 3�G0 ÿ G1�
G0 � �3ÿ 4m0�G1

P3� ÿ 1�
#
� G0P2�ÿ1�

G0 � G1

1ÿ2m1

e13E0
3

r0
22

; �36a�
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KI�t2�
K0

I

� P1�1� � 1

2

G0 ÿ 1ÿ2m0

1ÿ2m1
G1

G0 � G1

1ÿ2m1

P2�1�
"

� 3�G0 ÿ G1�
G0 � �3ÿ 4m0�G1

P3�1�
#
� G0P2�1�

G0 � G1

1ÿ2m1

e13E0
3

r0
22

: �36b�

It is noted that P1��1�, P2��1� and P3��1� solved from Eqs. (34a)±(34c) are related to the normalized
distance d=a and material constants in /�s0; t0). The above expressions show that the normalized far-®eld
electric loading e13E0

3=r
0
22 has linear in¯uence on the SIFs at crack tips. This is true with the crack in any

other orientations outside the inhomogeneity. The reason is that the inhomogeneity is made of linear pi-
ezoelectric material and the stress ®eld outside the inhomogeneity is linearly related to e13E0

3=r
0
22.

Finite element computation is performed to check the possible errors made due to the tedious deri-
vations. A half model is used because of the symmetry about the x1 axis. The mesh of the model is il-
lustrated in Fig. 4, where Fig. 4(a) is the overall 3-D mesh of the model, Fig. 4(b) is a plane view of the
mesh near the inhomogeneity±crack area, and Fig. 4(c) is the mesh near the crack tip. The length of the
element at the crack front is taken as 0:05c. For the current con®guration only Mode I stress intensity
factor KI exists. Comparisons are made between the normalized SIFs KI=K0

I obtained from the distributed
dislocation technique and FEM, under two sets of material constants combinations as shown in Fig. 5(a)
and (b), where the far-®eld electric loading is taken to be the same, i.e. e13E0

3=r
0
22 � 0:1, and the shear

modulus ratio of the inhomogeneity to the matrix is taken as m � 10:0 and m � 0:1, respectively. It is
shown that results obtained through the distributed dislocation theory coincide well with the ®nite element
analysis.

After the FEM veri®cation, some other numerical calculations involving di�erent parameters are also
performed based purely on the solution procedure described in Eqs. (32)±(36). Due to electro-mechanical
coupling behavior of the piezoelectric material, interaction between the piezoelectric inhomogeneity and the
crack is greatly a�ected by the far-®eld electric loading. As mentioned above, for the linear piezoelectric
material, the in¯uence of the electric loading on the SIF is linear. When the crack almost touches the pi-
ezoelectric inhomogeneity, the interaction between them becomes the largest. Fig. 6 shows the variation of
KI=K0

I at the two crack tips with the normalized far-®eld electric loading e13E0
3=r

0
22 when d � a� c� 0:01a,

i.e. the distance between the left crack tip and the inhomogeneity is only 0.01a. It can be seen that when the
matrix is ``harder'' than the piezoelectric inhomogeneity (Fig. 6(a)), the in¯uence of the far electric ®eld on
the SIF of the left crack tip is much greater than that on the right tip. In this case, the SIFs on both tips are
much bigger than K0

I (The SIF of the crack without the inhomogeneity, as given in Eq. (27)), and the left tip
is more dangerous than the right one. On the contrary, when the matrix is ``softer'' than the inhomogeneity
(Fig. 6(b)), the SIFs KI at both tips of the crack are smaller than K0

I , and the left tip is safer than the right
tip. So the left tip of the crack undergoes the greatest increase or decrease with the variation of E0

3 and the
inhomogeneity±matrix elastic modulus ratio. This is logical since the in¯uence of the piezoelectric inho-
mogeneity will be more pronounced to the nearer crack tip.

Fig. 6 indicates that the SIF tends to be in®nitely large when the normalized electric loading e13E0
3=r

0
22

increases along the positive x3 direction. In other words, the crack is very dangerous when E0
3 increases

along the opposite x3 axis direction (please note e13 is negative). On the other hand, the crack propagation
can be arrested if we increase E0

3 along the positive x3 axis direction. In Fig. 7, the interaction between the
crack and the inhomogeneity is considered for E0

3 in the opposite x3 direction for di�erent modulus ratios.
When E0

3 is strong in the opposite x3 direction, the variation of KI=K0
I with the normalized distance d=a is

large. But with increasing distances, the SIF of the crack tends to be constant at 1.0 in any case.
According to the numerical examples, we can see that the electric ®eld plays an important role in the

interaction between the piezoelectric inhomogeneity and the crack. It has a linear relationship to the SIFs of
the crack. But the variation of the SIFs with the electric ®eld is greatly a�ected by the direction of the
electric ®eld. Only when the far electric ®eld E0

3 increases along a certain direction, the SIF increases. The
extent of the in¯uence of the electric ®eld is decided by the distance between the crack and the inhomo-
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geneity, as well as the material properties of the matrix and the inhomogeneity. When the electric loading is
much weaker than the mechanical loading, i.e. the mechanical loading is dominant, the in¯uence of the
piezoelectric inhomogeneity on the crack is similar to that of an elastic inhomogeneity on a crack.

Fig. 4. The ®nite element model in the case of k� 0°: (a) the overall 3-D mesh; (b) the mesh near the inhomogeneity and crack area and

(c) the magni®ed mesh ®gure near crack tips.
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4.2. Crack±inhomogeneity interaction con®guration II

The second con®guration considered is shown in Fig. 8, where the crack face is perpendicular to the far-
®eld mechanical loading and it is directly above the inhomogeneity, with the connection line between the
centers of the crack and the inhomogeneity being perpendicular to the crack face, i.e. c� 0° in Fig. 2(c) and
k� 90° in Fig. 2(b). Other parameters de®ned in Fig. 2 are as follows:

h � d; w � 0; c � a=4: �37�
With the substitution of these parameters into the derivation procedure (Eqs. (1)±(28)), equations similar to
Eqs. (36a) and (36b) on the SIFs at the two crack tips can be obtained. Since the formulation procedure is
similar and parallel to that of Con®guration I described in the previous sub-section, here we present only
the numerical results and omit the detailed equation.

Fig. 5. Veri®cation of SIF by FEM analysis in the case of k� 0° under di�erent material constant ratio: (a) e13E0
3=r

0
22 � 0:1; m � 10:0

and (b) e13E0
3=r

0
22 � 0:1; m � 0:1.

Fig. 6. The SIFs at both crack tips when the crack almost touches the piezoelectric inhomogeneity �d � a� c� 0:01a� under di�erent

elastic modulus ratio: (a) m� 10.0 and (b) m� 0.1.
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FEM analysis is again performed to check possible errors made due to the tedious derivations. A half-
model is used as the problem is symmetric about x2 axis. The mesh of the model is illustrated in Fig. 9,
where Fig. 9(a) is the overall 3-D mesh of the model, Fig. 9(b) is a plane view of the mesh near the in-
homogeneity±crack area, and Fig. 9(c) is the mesh near crack tips. The length of the element at the crack
front is taken as c=8. For this con®guration, both Mode I and Mode II stress intensity factors exist.

Fig. 8. Crack±inhomogeneity interaction con®guration II.

Fig. 7. Variation of KI=K0
I with d=a when k� 0° under di�erent far ®eld electric loading: (a) e13E0

3=r
0
22 � 0:1; (b) e13E0

3=r
0
22 � 10:0.
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Comparisons are made between the normalized SIFs obtained from the distributed dislocation technique
and FEM under two di�erent conditions. The veri®cation results of KI=K0

I and KII=K0
I is presented in Figs.

10 and 11, respectively. From the veri®cation results, it can be concluded that results obtained through
distributed dislocation theory coincide well with ®nite element analysis.

The present con®guration involves both Mode I and Mode II stress intensity factors. Fig. 12 shows the
comparison of KI and KII at the crack tip. It can be seen that the changing tendency of KII with the external

Fig. 9. Finite element model in the case of k� 90°: (a) the overall 3-D mesh; (b) the mesh near inhomogeneity±crack area and (c) the

magni®ed mesh ®gure near the crack tip.
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Fig. 12. Comparison of KI and KII for k� 90°: (a) e13E0
3=r

0
22 � ÿ2:0; m � 0:1 and (b) e13E0

3=r
0
22 � 2:0; m � 10:0.

Fig. 10. Veri®cation of KI for k� 90°: (a) e13E0
3=r

0
22 � 0:1; m � 0:1 and (b) e13E0

3=r
0
22 � ÿ5:0; m � 0:1.

Fig. 11. Veri®cation of KII for k� 90°: (a) e13E0
3=r

0
22 � 0:1; m � 0:1 and (b) e13E0

3=r
0
22 � ÿ5:0; m � 0:1.
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conditions is very similar to that of KI. It also shows that KII is much smaller than KI and tends to be zero
with an increase in distance d. This phenomenon is evident, as the applied loading is perpendicular to the
crack face. The following analysis will focus on the Mode I stress intensity factor.

Due to the electro-mechanical coupling behavior of the piezoelectric material, interaction between the
inhomogeneity and the crack is greatly a�ected by the far-®eld electric loading. Fig. 13 shows the variation
of the normalized SIF KI=K0

I with the normalized distance d=a under the conditions e13E0
3=r

0
22 � 2:0 and

e13E0
3=r

0
22 � ÿ2:0, respectively. A comparison of Fig. 13(a) and (b) shows that the SIF of the crack is much

smaller at positive e13E0
3=r

0
22 value than that at negative e13E0

3=r
0
22 value. Since KI=K0

I is linearly related to
the far-®eld electric loading for linear piezoelectric inhomogeneity, the SIF of the crack will increase lin-
early when the far electric ®eld E0

3 increases along the positive x3 direction (as e13 is negative), which is in
contrast to the case shown in Fig. 6. So, E0

3 along the opposite x3 direction can protect the crack from
propagation for the current con®guration.

The distance d between the inhomogeneity and the crack is also a main factor to in¯uence the SIF of the
crack. The e�ect of the inhomogeneity to the crack weakens as d increases. The normalized SIF KI=K0

I tends
to be 1.0 when d goes to in®nity. This means that the interaction between the crack and the inhomogeneity
ceases after some distance.

Apart from the in¯uence of the far-®eld electric loading and the distance d, the SIF is also related to the
materials properties. When m � 0:1 and d=a is in small value, KI=K0

I increases sharply with d=a as shown in
Fig. 13(a), whereas it drops quickly with d=a in Fig. 13(b) for reversed electric loading. This can demon-
strate that the interaction between the crack and the piezoelectric inhomogeneity responds sensitively to the
varying external conditions when the piezoelectric inhomogeneity is ``softer'' than the matrix. When
m � 10:0, KI=K0

I varies marginally with the increasing d=a. In other words, the variation of KI=K0
I with d=a

is not that sensitive to electric loading when the inhomogeneity is ``harder'' than the matrix. However, Fig.
13 also indicates that for m � 10:0, the Mode I SIF KI is always higher than K0

I , which means a ``harder''
inhomogeneity makes the crack easier to propagate for this con®guration.

4.3. Crack±inhomogeneity interaction con®guration III

The third con®guration studied is shown in Fig. 14, the crack is perpendicular to the far-®eld mechanical
loading and it is located at an oblique angle 45° with reference to the connection line between the centers of
the crack and the inhomogeneity. For the present con®guration, parameters de®ned in Fig. 2 are as follows:

Fig. 13. Variation of KI with d when k� 90°: (a) e13E0
3=r

0
22 � 2:0 and (b) e13E0

3=r
0
22 � ÿ2:0.

1388 Z.M. Xiao et al. / International Journal of Solids and Structures 38 (2001) 1369±1394



k � 45�; c � 0; h � d=
���
2
p

; w � d=
���
2
p

; c � a=4: �38�
With the substitution of these parameters into Eqs. (1)±(28), by procedures similar to the previous two sub-
sections, numerical results for the SIFs are obtained parallel.

FEM analysis is performed again to check the tedious derivations. A full model is employed for the ®nite
element analysis. The mesh of the model is illustrated in Fig. 15, where Fig. 15(a) is the overall 3-D mesh of
the model, Fig. 15(b) is a plane view of the mesh near the piezoelectric-crack area and Fig. 15(c) is the mesh
near the crack tip. The length of the element at the crack front is taken as c=8. For this con®guration, both
Mode I and Mode II stress intensity factors exist. Comparisons are made between the normalized SIFs
obtained from the distributed dislocation technique and FEM under two sets of parameters. The veri®-
cation results of KI=K0

I and KII=K0
I is presented in Figs. 16 and 17, respectively. It is clear that results

obtained through distributed dislocation theory coincide well with ®nite element analysis.
The present con®guration involves both Mode I and Mode II SIFs, and the values at the two crack tips

are di�erent. The di�erence of the SIFs at the two crack tips is shown in Fig. 18, where Fig. 18(a) refers to
KI and Fig. 18(b) refers to KII. From Fig. 18, it can be seen that both KI and KII have similar changing
tendencies at two crack tips. Also, KI at the left tip is larger while KII is smaller than those at the right tip.
Since KII is much smaller than KI, the Mode I SIF at the left tip is more important for crack propagation.
Our following discussions concentrate on the left crack tip. Fig. 19 shows the comparison of KI and KII at
the left tip. It can be seen that the changing tendency of KII with the external conditions is very similar to
that of KI. It also shows that KII is much smaller than KI. KII tends to be zero with an increase in distance d.
This phenomenon is evident, as the applied loading is perpendicular to the crack face. So, the following
analysis focuses on the Mode I stress intensity factor at the left crack tip.

Fig. 20 shows the variation of the normalized SIF KI=K0
I with the normalized distance d=a under the

conditions e13E0
3=r

0
22 � ÿ2:0 and e13E0

3=r
0
22 � 2:0, respectively. It can be seen that the variation of SIF with

the external conditions is quite similar to that in the case shown in Fig. 8. However, Fig. 20 indicates that

Fig. 14. Crack±inhomogeneity interaction con®guration III.
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for m � 10:0, the Mode I stress intensity factor KI is always smaller than K0
I , which means a ``harder''

inhomogeneity can shield the crack from propagating. However, when m � 0:1 and d > 2a, KI is always
greater than K0

I , which means a ``softer'' inhomogeneity make the crack easier to propagate.

Fig. 15. The ®nite element model for the case of k� 45°: (a) the overall 3-D mesh; (b) the plane view of mesh near the inhomogeneity±

crack area; (c) the magni®ed mesh ®gure near crack tips.
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4.4. Comparison for the three con®gurations

To compare the inhomogeneity±crack interaction for the three con®gurations, Fig. 21 summarizes the
variation of KI=K0

I with normalized distance d=a for the three cases. The following can be seen:

1. No matter where the position of the crack is, the in¯uence of the inhomogeneity weakens with the in-
creasing distance between them.

2. Under di�erent normalized far-®eld electric loading e13E0
3=r

0
22 and shear modulus ratio m, the variation

of KI=K0
I with d=a at k� 45° is more stable than those at k� 0° and k� 90°. The inhomogeneity has larg-

er in¯uence for k� 0° and k� 90° than that for k� 45°.
3. When k� 0°, the SIFs at crack tips increase as the far-®eld electric loading increases along the opposite

x3 direction, whereas the SIFs increase with the increasing electric loading along positive x3 direction
when k� 90°.

Fig. 16. Veri®cation of KI for k� 45°: (a) e13E0
3=r

0
22 � 0:1;m � 0:1 and (b) e13E0

3=r
0
22 � ÿ5:0;m � 0:1.

Fig. 17. Veri®cation of KII for k� 45°: (a) e13E0
3=r

0
22 � 0:1; m � 0:1 and (b) e13E0

3=r
0
22 � ÿ5:0; m � 0:1.
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Fig. 18. Comparison of SIFs: (a) KI and (b) KII at the two crack tips under the condition: e13E0
3=r

0
22 � ÿ2:0; m � 0:1.

Fig. 19. Comparison of KI andKII at the left crack tip for k� 45°: (a) e13E0
3=r

0
22 � ÿ2:0; m � 0:1 and (b) e13E0

3=r
0
22 � 2:0; m � 10:0.

Fig. 20. Variation of KI with d at the left crack tip when k� 45°: (a) e13E0
3=r

0
22 � 2:0 and (b) e13E0

3=r
0
22 � ÿ2:0.
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4. When k� 90°, the SIF increases with increasing material moduli of the inhomogeneity. In other words,
the crack is easier to propagate with a ``harder'' inhomogeneity. When k� 0°, a ``softer'' inhomogeneity
can always make the crack easier to propagate.

5. Conclusion

The interaction problem of a cylindrical piezoelectric inhomogeneity embedded in an in®nite non-pi-
ezoelectric matrix containing a crack is investigated. With the crack perpendicular to the far-®eld me-
chanical loading, three typical con®gurations are considered. The analytical solutions obtained have been
veri®ed through the ®nite element analysis. The investigations show that interaction between the crack and
the piezoelectric inhomogeneity is in¯uenced by the geometrical con®guration, the far-®eld electric and
mechanical loading, as well as the material properties of the inhomogeneity and the matrix. Numerical
calculations on the interaction are carried out based on various in¯uence parameters. Results obtained

Fig. 21. Comparison of SIFs for the three geometrical con®gurations: (a) e13E0
3=r

0
22 � ÿ2:0; m � 10:0; (b) e13E0

3=r
0
22 � 2:0; m � 10:0;

(c) e13E0
3=r

0
22 � ÿ2:0; m � 0:1 and (d) e13E0

3=r
0
22 � 2:0; m � 0:1.
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might be applied on design of piezoelectric sensors to detect possible defects in solids or to use piezoelectric
®ber to arrest crack propagation in composite materials.
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